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ABSTRACT: We report multistate trajectory simulations, including
coherence, decoherence, and multidimensional tunneling, of phenol
photodissociation dynamics. The calculations are based on full-
dimensional anchor-points reactive potential surfaces and state
couplings fit to electronic structure calculations including dynamical
correlation with an augmented correlation-consistent polarized
valence double-ζ basis set. The calculations successfully reproduce
the experimentally observed bimodal character of the total kinetic
energy release spectra and confirm the interpretation of the most
recent experiments that the photodissociation process is dominated
by tunneling. Analysis of the trajectories uncovers an unexpected
dissociation pathway for one quantum excitation of the O−H
stretching mode of the S1 state, namely, tunneling in a coherent mixture of states starting in a smaller ROH (∼0.9−1.0 Å) region
than has previously been invoked. The simulations also show that most trajectories do not pass close to the S1−S2 conical
intersection (they have a minimum gap greater than 0.6 eV), they provide statistics on the out-of-plane angles at the locations of
the minimum energy adiabatic gap, and they reveal information about which vibrational modes are most highly activated in the
products.

■ INTRODUCTION

A natural protection mechanism of the fundamental building
blocks of life, namely, the photostability of nucleic acid bases
and amino acids against UV irradiation, is the existence of
ultrafast nonradiative decay routes, such as ultrafast internal
conversion (IC) of the UV-excited 1ππ* state to the ground
state.1−3 In phenol, a prototype molecule of the amino acid
tyrosine, the main radiationless deactivation pathway under UV
light is O−H bond fission to form H atom and phenoxyl
radical; this process is driven by the dark 1πσ* state. In the past
10 years, the photodissociation dynamics of phenol and
substituted phenols have been intensely investigated by both
experimental and theoretical workers.4−19

Figure 1 shows how the potential energy surfaces (PESs)
evolve as the O−H stretch coordinate increases. The PES of
the dark repulsive 1πσ* state (S2 in Franck−Condon region) of
phenol undergoes two conical intersections (CIs) with other
PESs, first with the strongly absorbing bound 1ππ* state (S1),
then with the ground 1ππ state (S0). The two CIs play key roles
in the photodissociation dynamics; their energetics and shapes
determine the reaction mechanism and the branching ratios of
photodissociation products for various UV wavelengths (λ).
The most direct experimental observable is the relative kinetic
energy distribution of photofragments, and that is found to be
bimodal for excitation in the range 279.145 ≥ λ ≥ 193 nm, as
determined by a variety of techniques, including multimass ion
imaging, high-resolution H Rydberg atom translational spec-

troscopy, and time-resolved velocity map ion imag-
ing.5,7,8,10,13,14,16,17 The fast kinetic energy component shows

Received: September 1, 2014
Published: October 27, 2014

Figure 1. Schematic profiles of the APRP adiabatic potential energy
surfaces used for the dynamics calculations of the photodissociation of
phenol. MECI denotes the minimum energy point on a conical
intersection seam, and SP denotes a saddle point. Energies (in eV) of
MECIs, SPs, and asymptotes are given in the figure. The zero of
energy is the minimum of the S0 state, which is not shown in the
figure.
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clear vibrational structures with a maximum at ∼6000 cm−1 for
the 0−0 excitation (λ = 275.113 nm, hν = 4.51 eV); for λ < 248
nm (hν > 5.00 eV), this peak gradually declines in intensity as λ
is reduced, and a new structured peak grows in a region close to
∼12 000 cm−1.7,8,16 The maximum of this new “faster” peak
remains at ∼12 000 cm−1, but the structure gradually disappears
as λ is further reduced. The vibrationally unresolved slow
component of the kinetic energy spectra is less sensitive to the
UV wavelength and peaks at ∼1500−2000 cm−1.8,13,16

On the basis of these observations, it was concluded that
ground-electronic-state (2B1) phenoxyl radical (PhO) is the
main product for various λ; the slow kinetic energy component
was explained as due to multiphoton processes4 or to the
formation of H atoms and 2B1 phenoxyl radicals via statistical
decay8 of the S0 state of phenol following IC. The first CI (CI1,
1ππ*/1πσ*) was estimated to have an energy of ∼5 eV, and the
fast kinetic energy centered at ∼12000 cm−1 for λ < 248 nm
was attributed to the ultrafast dissociation via the 1πσ* state
after passing through this CI.7 The fast kinetic energy
component peaking at ∼6000−6500 cm−1 for λ > 248 nm
has been explained by two mechanisms: one is IC to
vibrationally excited states of the S0 state of phenol with the
OH stretch as the main accepting mode, then dissociation via
the second CI (CI2, 1ππ/1πσ*); another is via H tunneling
through the barrier of the CI1 to the 1πσ* state.7 The latter
mechanism is supported by the most recent investigations.15−17

The fast-kinetic energy edge of the experimental kinetic
energy distribution showed state-resolved excitations of specific
vibrational modes of the 2B1 phenoxyl radical product. These
active modes, especially the most prominent excited mode,
which is ν16a, were interpreted as promoting the coupling
between the 1ππ* and 1πσ* states, thereby lowering the energy
of S1 state, and making the system more adiabatic and making it
easier to tunnel through the barrier on the S1 state for
dissociation under long-λ irradiation.16,20

The important insights from these previous studies whet
one’s appetite to understand the process more deeply.
However, full dynamical simulations have been unavailable
since they require including both electronic nonadiabaticity and
tunneling for a system with 33 internal degrees of freedom,
which has been beyond state-of-the-art capabilities. Our recent
work showing how to include tunneling in classical21 and
multistate22 simulations by the army ants algorithm is here
combined with the coherent switches with decay-of-mixing
algorithm (CSDM)23 and coupled potential surfaces repre-
sented by the anchor-points reactive potential (APRP)
method20,24 to allow full-dimensional simulations of the
photodissociation dynamics of phenol.

■ METHODS
The present work is based on combining (for the first time) four
theoretical methods for application to a single problem. The methods
are the 4-fold way for diabatization, the anchor-points reactive
potential method for analytic representation of potential energy, the
army ants semiclassical approximation for adding tunneling to
molecular dynamics simulations, and the coherent switches with
decay of mixing method for electronically nonadiabatic trajectory
calculations. Although all four methods have been described in
previous publications, we review them here as background to the
presentation of the results of applying them to the photodissociation
of phenol.
The 4-fold Way. Electronic structure calculations of the three

lowest singlet states of phenol were carried out by multiconfiguration
quasidegenerate perturbation theory25 with the jul-cc-pVDZ basis set26

and 12 active electrons in 11 active orbitals.19 Multiconfiguration
quasidegenerate perturbation theory involves a complete active space
self-consistent field calculation that provides reference functions for a
model space electronic Hamiltonian constructed by second-order van
Vleck perturbation theory; diagonalization of this effective electronic
Hamiltonian provides the adiabatic potential surfaces including the
effects of both static and dynamic electron correlation. The adiabatic
surfaces are labeled V1, V2, and V3, in order of increasing energy; these
33-dimensional surfaces involve 31-dimensional conical intersection
seams, where they intersect at cuspidal ridges, and the nonadiabatic
coupling vectors that couple them become singular at these ridges. To
make it affordable to perform lengthy trajectory calculations for large
ensembles of initial conditions, we needed to fit the potential energy
surfaces and couplings to analytic functions. To make this practical, we
transformed to a diabatic basis. We define diabatic representations as
those in which the surfaces are smooth, the dominant couplings are
nonsingular smooth scalars, and the vector couplings can be assumed
negligible.27 The transformation was accomplished by the 4-fold
way,28 as explained elsewhere.19 The 4-fold way is a direct
diabatization method based on configurational uniformity. The
diabatic potential energy surfaces are distinguished by their dominant
configurations and are labeled U1 (

1ππ), U2 (
1ππ*), and U3 (

1πσ*).
Near the equilibrium geometry of phenol, Vj equals Uj; between the
first conical intersection (CI1) and the second conical intersection
(CI2), we have V1 = U1, V2 = U3, and V3 = U2; and beyond the second
conical intersection, we have V1 = U3, V2 = U1, and V3 = U2. Near the
equilibrium geometry, the adiabatic states are also called S0, S1, and S2,
but these labels can become ambiguous away from the equilibrium
geometry.

The APRP Method. The anchor-points reactive potential
method24 is a recently developed PES fitting method applicable to
moderate or large systems. It combines general analytic forms for
large-amplitude modes with molecule-specific and anchor-point-
specific molecular mechanics terms for small-amplitude modes to
obtain full-dimensional semiglobal PESs. In our recent work,20 the
APRP method was used successfully to fit the above described diabatic
potential energy surfaces and their couplings for photodissociation of
phenol as functions of 33 nonredundant internal coordinates. We use
these fits in the present simulations.

CSDM Method. The coherent switches with decay of mixing
algorithm is a multistate semiclassical trajectory method, presented
and explained elsewhere23 and briefly summarized here. In CSDM,
each trajectory is governed by a trajectory-specific Ehrenfest self-
consistent potential (SCP), which is a weighted average of the
potential energy surfaces, and which may also be called a mean-field
potential or an effective potential Veff. This effective potential
corresponds to a coherent superpositions of states, and the method
also includes decoherence that produces pure quantized final
electronic states outside regions of strong coupling. The populations
and coherences of the electronic states are defined in the usual way in
terms of the electronic density matrix;23 in particular the diagonal
elements ρjj (which satisfy 0 ≤ ρjj ≤ 1) are the instantaneous
probabilites of being in each electronic state j,29 and they are the
weights that determine the mean-field Veff.

Army Ants Tunneling Algorithm. This is a quantum mechanical
rare-event sampling algorithm for including multidimensional
tunneling in molecular dynamics simulations.21,22 We assume that
the electronic states are fully coherent in the tunneling region by using
the SCP potential of the CSDM method but without decoherence;
that is, decoherence is only included in classically allowed regions, but
the elements of the electronic density matrix are allowed to change
coherently during the tunneling event.

■ CALCULATIONS

Representation. In the present work, we propagate the
trajectories in the adiabatic representation, for which the
surfaces and their gradients and nonadiabatic vector couplings
are obtained, as explained elsewhere,23 at every time step by
diagonalization of the fitted diabatic surfaces.
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Initial Conditions. Simulations were carried out for three
sets of initial conditions beginning in the S1 state: one (labeled
a) corresponding to the 0−0 excitation of S0→ S1 and the other
two (b and c) involving excitation of one quantum in νOH.
Because classical trajectories redistribute vibrational energies
unphysically if high-frequency modes are initialized with zero
point energy (ZPE), our initial conditions are a combination of
only slightly excited modes, classical modes, and quasiclassical
modes, where “quasiclassical” is used in the sense common in
the collision theory literature30 to denote initial conditions that
are classical except for having quantized vibration energies. The
procedure of only slightly initially exciting some of the modes is
similar to the constraint of freezing many modes,31 which is
popular in biochemical simulations. For large molecules (like
phenol or biological molecules), putting thermal or zero point
energy in all modes would place a very large amount of energy
in the whole system, but since that energy would be largely
conserved by zero point constraints in a quantum mechanical
system, but is not conserved in a highly excited anharmonic
classical systems, the classical mechanics is expected to mimic
the quantum mechanics better if most spectator modes have
only small vibrational excitation. Employing a small amount of
vibrational energy and allowing the mode to be flexible and to
accept energy if provided dynamically is, however, expected to
be a better model than completely freezing the vibrational
modes, and that is adopted here for some of the modes. The
prepared initial conditions for trajectories correspond to
experiments that use long pump pulses to populate a narrow
band of vibrational levels of the S1 state, but they do not
correspond precisely to any particular experiment (it is hard to
precisely simulate experimental initial conditions in trajectory
calculations due to the classical nature of the vibrations in such
calculations). Nevertheless, we can say that in an approximate
way, ensemble a approximately simulates the experimental 0−0
excitation, and ensembles b and c simulate excitation of one
quantum of the νOH mode in the S1 state with the energy in
other vibrational modes being very low (case b) or low (case c).
To ensure that the dissociative events we observe occur before
significant unphysical vibrational energy redistribution, we run
many 10 ps trajectories rather than a smaller number of long
trajectories. The specific initial vibrational energy in each mode
is provided in the next paragraph.
The 10 out-of-plane vibrational modes, which can promote

the diabatic couplings, are initialized with a vibrational energy
that is the maximum of ZPE of that mode or 0.013 eV (the
classical average thermal mode energy at a vibrational
temperature of 150 K, which we assume here to be typical of
possible experimental conditions). The in-plane modes except
νOH are given a very small vibrational energy of 0.001 eV for
cases a and b and 0.013 eV for case c; the νOH mode is
initialized with vibrational quantum number n = 0 (ZPE) in
case a and n = 1 in the other two cases.
Initial conditions a, b, and c have total energies E of 4.94,

5.35, and 5.61 eV, respectively. Table 1 gives the energies for
each case to reach MECI1 (the minimum energy point on the
first conical intersection seam), the S1 saddle point (SP), or
each electronic state of the product if the vibrational energies of
bound vibrational modes were conserved. These energetics are
also indicated in Figure 2. The energies given in Figure 2 and
Table 1 are the sums of the potential energy and vibrational
energy terms at each stationary point, and the clearest way to
explain their usage for interpretation purposes is with an
example. Take ensemble a in Figure 2 as an example; the initial

condition has total energy 4.94 eV, which is the sum of
potential energy of the equilibrium geometry of the S1 state
(4.42 eV shown in Figure 1) and the vibrational energy of our
initial conditions (0.52 eV). For interpretative purposes, we
consider a model of the trajectories in which the vibrational
energies of spectator modes (nondisappearing vibrational
modes) are conserved. Excluding the initial vibrational energy
(∼0.21 eV) of the disappearing mode O−H stretching at
stationary points MECI1 and SP along the photodissociation
reaction path, the vibrational energy of the system reduces to
0.31 eV, and the total energies that would be required for this
model trajectory to reach the two stationary points are at least
5.66 eV (potential energy 5.35 eV plus vibrational energy 0.31
eV) and 5.45 eV (potential energy 5.14 eV plus vibrational
energy 0.31 eV), respectively. In the product region, three
modes, namely, the O−H stretch, the C−O−H bending with
initial vibrational energy of 0.001 eV, and the C−C−O−H
torsion with initial vibration energy of 0.013 eV, disappear
compared to the reactant region, and the vibrational energy
further reduces to 0.30 eV. The energy of the ground-state
products tied up in vibration in the model trajectory becomes
3.93 (potential energy) + 0.30 = 4.23 eV, and the first excited-
state products have at least 4.74 + 0.30 = 5.04 eV. Similarly, we
can obtain these energies for the other two ensembles. Because
ensemble b differs from a only in the initial vibrational energy
of the O−H mode, which is a disappearing mode for all the key
stationary points (MECI1, SP, and products), all these
stationary points except for those in the initial reactant region
have the same energies listed as those of ensemble a. As we
mentioned earlier in this section, some nondisappearing modes
of ensemble c have more initial energies than in ensembles a
and b, and this leads to a higher energy requirement for model
trajectory c to reach the stationary points shown on the bottom
of Figure 2.

Tunneling. The tunneling path is taken to be the O−H
stretch internal coordinate by the method of refs 21 and 22.
Note that none of the other internal coordinates are

Table 1. Summary of the Trajectory Simulations

total energy E (eV) (a) 4.94 (b) 5.35 (c) 5.61

MECI1a 5.66 eV 5.66 eV 5.93 eV
SPa 5.45 eV 5.45 eV 5.72 eV
Excited 2B2 state of phenoxyl + Hb 5.04 eV 5.04 eV 5.29 eV
Ground state of phenoxyl + Hb 4.23 eV 4.23 eV 4.48 eV
Total number of trajectories 117181 25597 34009
Number of reactive trajectories 560 7631 10362
Number of reactive trajectories without
tunneling

0 1 8

⟨t⟩ (fs)c 384 871 276
aThis row gives the energy that would be needed to reach this point if
all vibrational energies except the O−H stretch mode were conserved.
Although these vibrational energies are not conserved, the energetic
requirement for the process if they were conserved provides a useful
guide to understanding the energetics of the trajectories. bThis row
gives the energy that would be needed to reach this point if vibrational
energies of all modes except those that disappear upon dissociation
(νOH, C−O−H bend, C−C−O-H torsion) were conserved. Although
these vibrational energies are not conserved, the energetic requirement
for the process if they were conserved provides a useful guide to
understanding the energetics of the trajectories. cThe average time
between the last successful tunneling event and dissociation, which is
assumed to occur 50 steps after the O−H distance of the bond being
broken becomes greater than 6 Å.
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constrained to an equilibrium value, and each tunneling path
has different values for the other 32 internal coordinates. Thus,
the ensemble of tunneling paths samples a wide range of values
of all 33 internal coordinates.

Termination Condition. Because the diabatic coupling in
our fitted potential energy surfaces vanishes for O−H distances
greater than 5 Å, except for the coupling due to the C−C−O−
H torsion, which causes negligible coupling at such long
distances, no further electronic transitions take place after 5 Å.
A trajectory is terminated 50 integration steps after the O−H
distance of the dissociating bond becomes 6 Å. In the complete
mechanism, electronically excited phenoxyl produced by
photodissociation can decay by unimolecular internal con-
version after the H atom has departed (see, for example, the
recent discussion of a similar process in pyrrole32); we consider
this to be a separate kinetic step, and it is not considered here.
Note that the relative translational energy is independent of
whether such postdissociative internal conversion occurs, so the
calculated final relative translational energies are the same as if
they were measured several cm away from the photoinduced
process, as might be the case experimentally.

■ RESULTS

Figure 2 shows that none of the three ensembles has enough
energy to pass through either MECI1 or SP without tunneling.
However, we included multidimensional tunneling along the
OH stretch coordinate by the method of ref 22. Table 1 shows
the total number of trajectories we run for each ensemble, the
number of reactive (dissociated) trajectories, and the number of
reactive trajectories without tunneling. No trajectories react
without tunneling for E = 4.94 eV. Only one out of 7631 and
eight out of 10 362 reactive trajectories for E = 5.35 and 5.61
eV do not involve tunneling, which clearly confirms that
hydrogen tunneling is the main reaction mechanism of phenol
photodissociation and that the present study would not have
been possible without the new tunneling method of ref 22.
The calculated lifetimes of the S1 state for E = 5.35 and 5.61

eV, which correspond to one quantum excitation of νOH mode
in S1 state, are 0.88 and 0.66 ns, respectively, and are reasonably
shorter than the experimental observation15 of ∼2 ns for 0−0
excitation.
The distributions of the product kinetic energy are in Figure

3. The calculated maximum kinetic energies that would be
observed if vibrational energies of nondisappearing modes were
conserved, as based on the energetics in Figure 2, are marked
using purple and green vertical arrows, respectively, for excited
and ground electronic-state products. Figure 3 shows that the
histograms of the present simulations have similar shapes and
trends as the experimental kinetic energy spectra.16 Recall that
the simulations with initial conditions a correspond approx-
imately to the experimental 0−0 excitation, and we note that
the simulations with initial conditions b and c are more like the
photodissociation experiments with λ ∼ 239−252 nm (see
Supporting Information). As shown in Figure 2, case a has
lower energy than the energy of excited-state products
including vibration, so only ground-state products can be
obtained if spectator-mode vibrational energy is conserved.
However, the ∼4% excited-state products are observed because
the present semiclassical simulations do not completely retain
vibrational energies of modes that persist in the products,
whereas quantum simulations of the 0−0 photodissociation
would conserve ZPE (this is a well-known deficiency of
trajectory simulations33). This may also be the reason that the
slow kinetic energy peaks of our simulations for the two higher-
energy cases center at slightly higher kinetic energy than those
of experiments.

Figure 2. Schematic profiles of the model-trajectory energetics (see
text) of the three ensembles along the photodissociation path of
phenol. The differences between the total energy E and these product
energies (red vertical arrows) are approximate upper limits on kinetic
energy release. MECI denotes the minimum energy point on a conical
intersection seam, and SP denotes the saddle point. The zero of energy
is the minimum of S0 state, which is not shown in the figure.
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The slow kinetic energy component centered at ∼2000 cm−1

in the experiments under 0−0 excitation (275.113 nm) is due
to the accumulation of vibrational energy in the ground-
electronic-state products. As shown in Figure 2 and Table 1, in
cases b and c the excitation of the νOH mode provides enough
energy to produce electronically excited products after passing
the second intersection region. The branching ratio of products
is shown in Figure 3. As pointed out above, the trajectory
simulations do not correspond precisely to the experimental
initial conditions, but the experimental kinetic energy
distributions are shown to illustrate the general trend in the
excitation energy dependence of the kinetic energy release
observed experimentally. The final-state analysis of the present
simulations clearly shows that for the energies of simulations b

and c, the slow kinetic energy peak is mainly due to production
of electronically excited products rather than ground-electronic-
state products as postulated by Nix et al.8 (although, as
discussed above, we are considering only the initial photo-
dissociation and not any subsequent unimolecular internal
conversion, whereas the experimental detection may actually
occur after internal conversion has occurred), and the fast
kinetic energy component is due to ground-electronic-state
products. The present explanation for the slow kinetic energy
release agrees with the observations of Hause et al.10 for the
dissociation of phenol-d5 with an initially excited O−H
stretching vibration. The first excited-state products were also
reported in King et al.’s work13 for λ = 230 nm and also Idbal et
al.’s work14 for λ = 200 nm. In addition, we found a small
proportion of the slow peak is from highly vibrationally excited
ground-electronic-state products produced by direct dissocia-
tion. An important advantage of simulations over experiments
is that in experiments performed to date the low vibrational
states of the excited electronic state cannot be distinguished
from the high vibrational states of the ground electronic state,
whereas Figure 3 provides this separation.
The branching ratio of the products was also identified in

some earlier 2-D time-dependent quantum wave packet
dynamics studies of photodissociation of phenol.6,34 However,
a 2-D simulation cannot model the vibrational energy release in
a system with many degrees of freedom, and therefore cannot
predict the final kinetic energy distribution.
Vibrational mode selectivity was inferred based on the

vibrationally resolved high-kinetic-energy end of the kinetic
energy spectrum.7,8,16 But product vibrational modes can be
preferentially excited not only because systems with these
modes excited in S1 react preferentially, but also because the
modes accept energy released after passing the highest potential
energy on the dissociation path. The trajectory simulations do
not yield quantized final vibrational energies, but we can draw
mechanistic conclusions by comparing the change of vibrational
energy of each mode from reactants to products, and by
computing average values (⟨n⟩ , obtained with the harmonic-
oscillator approximation35) of the quantized unitless action
variables that are classical analogues of vibrational quantum
numbers. Table 2 lists the four in-plane and two out-of-plane
modes where ⟨n⟩ increases the most: for in-plane, the CO
stretch, νCO, C−C−C bending modes ν12, and ν6a, and in-plane

Figure 3. (a−c) Histograms of kinetic energy for cases a, b, and c. (d)
Experimental16 kinetic energy spectra. The vertical arrows correspond
to the vertically downward arrows in Figure 2 and are the maximum
kinetic energies that would be observed if vibrational mode energies of
nondisappearing modes were conserved: purple and green, respec-
tively, for excited and ground electronic-state products. Part d is
reprinted with permission from ref 16. Copyright 2011, American
Institute of Physics. The smallest wavelength (218 nm) in this figure is
for a higher energy than is studied in this article and is shown only to
illustrate the trend in the kinetic energy distribution as a function of
excitation energy.

Table 2. Active Vibrational Modesa

mode νCO ν12 ν6a ν18b ν16a ν11

type stretch CCC bend modes CO wag ring distortions

E (eV) symmetry a′ a′ a′ a′ a″ a″
a initial Evib 8 8 8 8 105 105
4.94 final ⟨Evib⟩ 1051 389 275 266 278 172

change of ⟨n⟩ 0.69 0.47 0.49 0.57 0.45 0.35
b initial Evib 8 8 8 8 105 105
5.35 final ⟨Evib⟩ 990 346 284 183 199 1207

change of ⟨n⟩ 0.65 0.41 0.51 0.39 0.24 5.74
c initial Evib 105 105 105 105 105 105
5.61 final ⟨Evib⟩ 1059 781 266 217 291 141

change of ⟨n⟩ 0.63 0.83 0.30 0.26 0.48 0.18

aWe use Wilson’s notation36 for modes; energies are in cm−1; ⟨Evib⟩ and ⟨n⟩ are the average vibrational energy and quantum number for specific
modes of ground-electronic-state phenoxyl products. This table lists the four a′ modes with the largest increase in ⟨n⟩ and the two a″ modes with the
largest increase in ⟨n⟩ , where the classical vibrational action variable is (n + 1/2)h and h is Planck’s constant. Energies in modes (Evib) are in cm−1.
Modes of a′ symmetry are in-plane vibrations, and modes of a″ symmetry are out-of-plane vibrations.
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CO wagging mode ν18b, and for out-of-plane, the ring distortion
modes ν16a and ν11. The latter two modes promote state
couplings that (i) lower the adiabatic barrier and thereby
promote tunneling and (ii) promote adiabatic behavior thereby
decreasing diabatic recrossing back to phenol. It is encouraging
that the modes ν16a, ν11, ν6a and ν18b were also observed to be
excited in experiments.8,16 Excitation of νCO and ν12 can be
explained by the fact that the equilibrium C−O distance
decreases by 0.12 Å and the equilibrium C−C−C angles change
by as much as −3° in progressing to 2B1 phenoxyl.

20

An important aspect of the simulations is that they yield
more information about the reaction path and mechanism than
is available experimentally; for example, if we use V1, V2, and V3
to label the three lowest adiabatic states and U1, U2, and U3 to
label the diabatic states (1ππ, 1ππ*, and 1πσ*), the minimum of
(V3−V2) along a trajectory will indicate how close the two
adiabatic states are to each other, and the minimum of |U3−U2|
will show how close the diabatic states 1ππ* and 1πσ* are to
each other. We recall, as explained above, that in different
regions of the global space the diabatic states can correspond to
different adiabatic labels because of the state crossings and
avoided crossings, and we must keep in mind that V1, V2, and
V3 are always ordered based on the adiabatic energy. Figure 4
plots the distributions of the minimum of (V3−V2) in the
classical regions, i.e., excluding tunneling regions, and the (U2−
U3) distribution at the minimum of |U3−U2| (left column), and
the distributions of (U2−U3) at the minimum of (V3−V2) for
dissociated trajectories, and these plots show that most
trajectories have a minimum value of (V3−V2) that is greater

than 0.6 eV for all the three ensembles, but some of trajectories
of ensemble c pass very close to the conical intersection of the
1ππ* and 1πσ* states.
The left column of Figure 5 shows the ROH distributions at

starting points, points of maximum Veff (that is, of maximum

SCP), and ending points of the successful tunneling paths, and
the right column plots the distributions of the changes in the
populations (as measured by the changes Δρjj in diagonal
elements of the adiabatic electronic density matrix) that occur
during the tunneling events. The two higher-energy ensembles,
in which the O−H stretch mode is initially excited, usually start
their tunneling at short ROH (∼0.9−1.0 Å). The system is
initially in the bound S1 state (whose adiabatic and diabatic
(1ππ*) potentials are called V2 and U2 at small ROH), but
reaction leads to the either the 1ππ state (V2 or U1 at large ROH)
or the 1πσ* state (V1 or U3 at large ROH). As shown in Figure 1,
in the region of ROH ∼0.9 Å, the S2 state PES (V3 or U3 at small
ROH) has a shallow well, where evolution of the electronic wave
function along a trajectory can introduce a large coherent
weight (up to ∼75% for E = 5.35 eV, up to ∼90% for E = 5.61
eV) of the U3 state in the SCP. Figure 6 shows representative
trajectories. For the two higher-energy cases, the tunneling
events all start in that small ROH region with a relatively high
weight of V3 (which is U3 in that region) in the Veff, and then
they tunnel through the avoided crossing of V2 and V3 and end
in a region where U3 is lower than U2 or nearly degenerate with
it. The right side of Figure 5 shows that evolution of wave
functions along tunneling paths leads to an increase of
population of U3 (which is usually V2 at the end of the
tunneling event, so that this corresponds to positive Δρ22 in the
adiabatic representation) and a decrease of the weight of U2
(usually V3 at the end of tunneling, hence negative Δρ33). This
mechanism, involving tunneling in a coherent mixture of states

Figure 4. Distributions (in the classical regions, i.e., excluding
tunneling regions) of (V3−V2) at the minimum of (V3−V2) and the
(U2−U3) distribution at the minimum of |U3−U2| (left column), and
the distributions of (U2−U3) at the minimum of (V3−V2) for
dissociated trajectories. Top, E = 4.94 eV; middle, E = 5.35 eV;
bottom, E = 5.61 eV.

Figure 5. ROH distribution at three points during the tunneling events,
and the adiabatic state population changes (Δρjj) during tunneling.
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in the smaller ROH region, was quite unexpected since previous
discussion of tunneling has all focused on the adiabatic SP at
larger ROH.
For E = 5.61 eV, some tunneling ends on the U3 potential

near the U3/U2 crossing, but before the V3/V2 crossing (CI1),
that is, U3 is still V3 at the end of the tunneling event, thus a
small number of trajectories with negative Δρ22 and positive
Δρ33 are seen in Figure 5. More than one tunneling event can
occur before the dissociation. Without tunneling, the system
can be trapped in the inner well without dissociation or has to
decrease the U3 weight in the Veff to stay mainly on the U2 state.
At E = 4.94 eV, there is not enough energy to introduce a

large weight of the U3 state, so that this ensemble has to tunnel
through a longer path (∼1 Å of ROH increase) compared to the
other two ensembles. It also takes longer times (>8 ps in the
representative trajectory shown in Figure 6) to begin to tunnel,
so the rate is lower. During the long-path tunneling, the system
involves some coherent population of the ground state that
lowers Veff; this results in the positive Δρ11 observed in the
right top of Figure 5. At the end of the long-path tunneling, U3
(which is V3 at the start of the tunneling event) becomes V2;
thus, those paths involving small weight of U3 at the start of
tunneling are responsible for the negative Δρ33 and positive
Δρ22 peaks. At the end of tunneling, the electronic populations
ρ11 and ρ22 are distributed in the ranges 0−0.5 and 0.5−1.0 (for
more data on population, the reader is referred to Figure S5 in
Supporting Information); this indicates that the reaction
following 0−0 excitation is mainly caused by direct dissociation
instead of indirect dissociation via internal conversion.

After successful tunneling the systems need some time to
adjust the populations on the three states to find a path with a
suitable Veff to cause dissociation. Table 1 lists the average
times; a longer average time (0.9 ps; Table 1) is found for E =
5.35 eV, because, in order to introduce a larger weight of U3 at
the start of tunneling, it converts most of the energy into
potential energy, and the low kinetic energy slows down the
process. This shows up as almost unchanged potentials and
geometries for a time range of ∼0.5 ps in the trajectory for E =
5.35 eV in Figure 6, which is not untypical.
The longer tunneling paths at E = 4.94 eV tend to lead the

system directly to the vicinity of CI2, and most of the
dissociated trajectories directly pass through the CI2 region to
ground-electronic-state products. Plotting the distributions of
minimum of V2−V1 in the dissociated trajectories (Figure 7)
shows that ensembles b and c tend to dissociate adiabatically to
excited-state products by passing through the avoided crossing
of V2/V1 near CI2. The geometries at the minima of V2−V1 of
the three ensembles all deviate slightly from the planar
structures, and the averages of the 10 out-of-plane non-
redundant angles20 are mainly distributed in the region of 8−
22° (see Figure S3 in Supporting Information). This shows the
importance of understanding nonplanar conical intersections,
which have been relatively unappreciated.37

■ SUMMARY
The present multistate CSDM trajectory simulations including
tunneling, based on full-dimensional APRP potentials and state
couplings, agree with experiment for the bimodal nature of the

Figure 6. Representative trajectories for E = (left) 4.94, (middle) 5.35, and (right) 5.61 eV in classical region. The vertical dashed lines mark the
places where tunneling events happen; Veff is the SCP; ⟨ϕ⟩ is the average of 10 nonredundant out-of-plane angles.
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kinetic energy spectra for the photodissociation of phenol, and
they provide direct evidence that the low kinetic energy release
is not because of indirect statistical decay but mainly due to
direct dissociation to ground- (for the low-energy case) and
excited- (for cases with initially excited OH stretching mode)
electronic-state products, and show the important role of the
coherence of electronic states in dynamics. The details of
dynamics that cannot be obtained experimentally and by
theoretical simulations only considering two or three important
coordinates are uncovered by statistical analysis made possible
by running a large number of full-dimensional dissociating
trajectories, where the dissociation is enabled by tunneling.
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More statistical analysis of the simulations. This material is
available free of charge via the Internet at http://pubs.acs.org.
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